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Trapping thresholds in ordinary site percolation
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Numerical estimates for percolation trapping thresholds in two- and three-dimensional ordinary site perco-
lation are calculated. Threshold estimates are square 0.396, triangular 0.490, diamond 0.529, simple cubic
0.658, body-centered cubic 0.727, and face-centered cubic 0.780, with estimated accuracy bettérGBan
These are all slightly less than one minus the corresponding ordinary percolation thréglitbidst trapping.

These trapping thresholds appear to be described by the universal formula proposed by Galam and Mauger for
ordinary percolation thresholdsS1063-651X98)12812-X

PACS numbes): 64.60.Ak, 47.55.Mh

[. INTRODUCTION Carlo simulations. These trapping thresholds appear to obey
the universal formula proposed by Galam and MauUdéy
Percolation with trapping is important because of its rel-for ordinary percolation thresholds, but with different nu-
evance to the trapping of residual fluids in slow capillary merical values.
dominated displacements in porous media. Residual fluid

saturation is a critical parameter to the ec_onom_ics of petro- Il IMPLEMENTATION

leum reservoirs. A description of percolation with trapping

can be found in several textbook$&—5|. Percolation with For hypercubic networks, simulations were performed on
trapping exists in two varieties: ordinary and invasion. LXL andLXLXL lattices. The unit vectors for the body-

In 1983 estimates of thresholds in percolation with trap-centered cubic and face-centered cubic lattices were the same
ping were provided by Wilkinson and Willems¢6@]. They  as used by Lorenz and ZifiL 1], and the diamond lattice was
studied invasion percolation with trapping on triangular,also based on a cubic structure. Rhombic boundaries were
square, and honeycomb lattices in two dimensions, but onlysed for the triangular network.
the simple-cubic lattice in three dimensions. They observed Simulations began by assigning an uncorrelated random
that the simple-cubic lattice gives a constant value of thenumber to each site from an arbitrary distribution. At each
fraction of invading phase op;~0.66 as the lattice size step the site with the largest value was chosen to be the next
L—oo. This corresponds to a defender fraction of 0.34,site to be occupied. Fluid was trapped when the displaced
which they noted was close to but significantly differentfluid became disconnected from a single face, designated the
from the percolation threshold,=0.3116 for the same lat- outflow face, and no further invasion into trapped regions
tice. Invasion percolation with trapping on the two- was allowed. The other faces acted as trapping boundaries.
dimensional2D) lattices produces power-law behavior, with Trapping was efficiently implemented by using the Hoshen
the fraction of invading phase tending toward zerd.as~. and Kopelman cluster labeling algorithih2] so that in the

Trapping was extended to ordinary percolation by Diasnumerical code only one pass over the sites was required.
and Wilkinson[7] without providing numerical estimates of Some speed improvement was obtained by running a check
threshold values. At that time, interest was concentrated on
cluster size distributions and the universality of critical ex- 0.55
ponents, and whether trapping created a different class. The
evidence supported a negative conclusion.

Since then, estimates of trapping thresholds have been 0.5
neglected, especially in three dimensions. A reason for this is
that the trapping mechanism necessarily involves much
larger amounts of computational effort than ordinary perco- Py 045
lation thresholds as it is necessary to check for trapping as
each site is added. Pokorey al. [8] have made an estimate
for bond percolation with trapping on the square network at : Eope o ©
p;~0.520. The ordinary percolation threshofg (bond
without trapping for the square lattice is exactly (9% Here 0.35
p:+ p:.>1, but Pokornyet al, use a different definition gb, " 500100 50 20 10
from the one used here, and by Wilkinson and Willem{€&n
wherep;+p.=0.66+0.31<1.

In this paper estimates for trapping percolation thresholds FIG. 1. Trapping thresholds,(L) on a squareq=4) network
on the triangular, square, simple-cubic, body-centered cubiglotted againsi (abscissa scale is~%"). Square and diamond
and face-centered cubic lattices are estimated by Monteymbols were obtained using rulgd and,, respectively.
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FIG. 4. Trapping thresholdp,(L) on a simple-cubic d=6)
network plotted against. (abscissa scale it~ %"4. Square and
diamond symbols were obtained using rufgs and fR,, respec-
tively.
in the local region as each site was added to detect the pos-
sibility of trapping occurring at that step. Only if trapping In two dimensions values produced using riie tended to
was a possibility was the full network searched. Between 10ollow Eq. (1) more closely, whereas in three dimensions
and 10 realizations were run over a range of valuesLof  rule R, appeared to give a better match. Fitted valuesAfor
with a target standard error ¢£0.001. The maximum size andy are recorded in Table I. Thg values were used to
lattice simulated in 2D hadl =500 and in 3DL=80. The construct the abscissa scales in Figs. 1-6.
simulations consumed an aggregate of some months of fast Extrapolated values fop, as L—% are summarized in
desktop CPU time. Table Il, where known values gf. are included for com-

The finite-size threshold;(L) for the fraction of invading parison. Also shown are the surpst p.. Note that the 2D
phase can be defined in various ways. Here two definitionfattices givep;>0 asL—«, unlike invasion percolation
were studied to provide additional estimates of accuréy: with trapping[6].
the defending phase becomes disconnected from the face op- Galam and Maugef10] have proposed the following
posite the outflow face, rul&;, and when(b) all the de- single formula for the ordinary percolation thresh@with-
fending fluid is trapped, rulé,. For all of the cases here, out trapping on all lattices:
these two rules converge to the same valué as».

Pe=pol(d—1)(g—1)] 2d", @)

FIG. 2. Trapping thresholdp,(L) on a triangular {=6) net-
work plotted against. (abscissa scale is~°%73. Square and dia-
mond symbols were obtained using rufds andfR,, respectively.

Ill. RESULTS , , , _ o
whered is the dimension and is the coordination number.

Results of the numerical simulations are plotted in FigsFor site percolation Galam and Mauger estimate the values
1-6. Finite-size scaling fop,(L) was fitted to the relation- {p,=0.8889;a=0.360% on the triangular, square, and hon-
ship eycomb lattices, anfp,=1.2868;a=0.616Q on all lattices

d=3. For site percolatiob=0. This relationship is not exact

p(L)—p=ALY. (1)
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FIG. 5. Trapping thresholdg,(L) on a body-centered cubic
(q=8) network plotted againdt (abscissa scale Is~+%9. Square
and diamond symbols were obtained using rifgsand R,, re-
spectively.

FIG. 3. Trapping thresholdp;(L) on a diamond §=6) net-
work plotted against. (abscissa scale is~1%3. Square and dia-
mond symbols were obtained using rufds andfR,, respectively.
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0.8 TABLE Il. Comparison of ordinary percolation thresholds and
trapping thresholds. Accuracy estimates for are better than
o +0.002.
0000 ® ® : :
078 Lattice Pt pc(site)® Pct Py
Square 0.396 0.5928 0.989
Py Triangular 0.490 05 0.990
076 Diamond 0.529 0.4299 0.959
Simple cubic 0.658 0.311604 0.970
Body-centered cubic 0.727 0.2460 0.974
Face-centered cubic 0.780 0.1998 0.980
0.74 50 20 10 %From Ref.[9], pp. 182-183.
L IV. DISCUSSION
FIG. 6. Trapping thresholds(L) on a face-centered cubig ( It can be concluded from this study that percolation with

=12) network plotted againdt (abscissa scale &™*%). Square  {ranping appears to follow the same universal formula as the
and diamond symbols were obtained using rufssandR,, re-  gdinary percolation threshold, with the same exporent
spectively. but with a different coefficienp,. In both 2D and 3Dp,
+p.<1 and 1I-p,—p.—0 asg—. This latter result is
intuitively consistent with trapping becoming more difficult
as the coordination number increases: there are more outlets
for a potentially trapped fluid cluster to escape.

These results are significant because of the application to
residual phases in multiphase flow through porous media and
: demonstrate the importance of coordination number. For ref-
and Mauger 10] the values that deviate most from the fo_r- erence, Sahinfi4] has remarked that for sandstones an aver-
mula are the square(0.0056) and the body-centered cubiC oye coordination number between 4 and 8 is a reasonable
(+0.007) lattices, hence the deviation here from Galam andstimate. There are also unpublished measurements of car-
Mauger’s values: they also included results frdm 3. . bonate rocks with coordination numbers in the range 2.3—

It was of interest to test the trapping thresholds againsg 4 4jthough measurement of coordination number in real
Galam and Mauger's formula. Thg values in Table Il were 541045 rocks is not subject to unambiguous interpretation,

fitted to especially at these low coordination numbers.
_ —aab Finally, some concluding observations on finite-size scal-
Pe=1=pol(d=1)(q—1)] "d 3 ing can be made. For ordinary percolation without trapping,
- . the exponent- 1/v appears, where is the correlation length
giving {po=1.17; a=0.33 with d=2 and{po=1.33;a o nonent., has been determined as 4/3 in two dimensions

=0.59 with d=3. A fit of the values in Table Il to Eq$2) 44 approximately 0.88 in three dimensid@ If the same
and (3) is shown in Fig. 7. Combining thp, and p. results

and van der MarcK13] explores evidence that dimension
and coordination number are not sufficient to predict perco
lation thresholds. Here the inexactness of the formula wa
tested against the limited range f values in Table Il. On
the lattices withd=2 this gave{py=1.17; a=0.33 and
with d=3 {py=1.24; a=0.60 was obtained. From Galam

allows a comparison of the difference between percolation
thresholds with and without trapping:
5
1-p—pc=0.02q-1) *%
in two dimensions and 1
~0.60 Po
1-p—p.=0.069-1) ~ 3
1
in three dimensions. 1-p
TABLE I. Finite-size scaling fop(L) given by Eq.(1), ordi- 5 )
nary site percolation with trapping. Tiangular mt
. ~—
Lattice A y Rule square
Square (=2, q=4) 0.73 0.77 R, 5 10 20
Triangular =2, q=6 0.57 072 %R
liang @_ Q_ ) 2 {d-1)a-1)
Diamond @=3, q=4) —1.05 1.03 %R,
Simple cubic =3, q=6) —-0.16 0.74 R, FIG. 7. Comparison of thresholds with and without trapping as a
Body-centered cubicd=3, g=8) —-0.78 105 %R, function of (d—1)(g— 1) with logarithmic scales. Circles and disks
Face-centered cubid& 3, g=12) —-0.38 1.01 R, are for ordinary percolation without trapping, triangles and dia-

monds are for ordinary percolation with trapping.
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scaling were to appear henge=0.75 in two dimensions and as good asy, and it is a problem to separate statistical
y=1.14 in three dimensions would be expected. These valscatter from deviations from Eql) at smallL values. Con-
ues are close to, but different from, the values in Table Iisiderably more computational effort will be required to re-
noticeably different for the cubic lattice. It is difficult to draw solve the details of finite-size scaling for rulgs, 2, and
conclusions because the estimates for the exponangé not  alternative termination rules.
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