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Trapping thresholds in ordinary site percolation

Lincoln Paterson
Australian Petroleum Cooperative Research Centre, CSIRO Division of Petroleum Resources, P.O. Box 3000, Glen Waver

Vic 3150, Australia
~Received 12 August 1998!

Numerical estimates for percolation trapping thresholds in two- and three-dimensional ordinary site perco-
lation are calculated. Threshold estimates are square 0.396, triangular 0.490, diamond 0.529, simple cubic
0.658, body-centered cubic 0.727, and face-centered cubic 0.780, with estimated accuracy better than60.002.
These are all slightly less than one minus the corresponding ordinary percolation thresholds~without trapping!.
These trapping thresholds appear to be described by the universal formula proposed by Galam and Mauger for
ordinary percolation thresholds.@S1063-651X~98!12812-X#

PACS number~s!: 64.60.Ak, 47.55.Mh
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I. INTRODUCTION

Percolation with trapping is important because of its r
evance to the trapping of residual fluids in slow capilla
dominated displacements in porous media. Residual fl
saturation is a critical parameter to the economics of pe
leum reservoirs. A description of percolation with trappi
can be found in several textbooks@1–5#. Percolation with
trapping exists in two varieties: ordinary and invasion.

In 1983 estimates of thresholds in percolation with tra
ping were provided by Wilkinson and Willemsen@6#. They
studied invasion percolation with trapping on triangul
square, and honeycomb lattices in two dimensions, but o
the simple-cubic lattice in three dimensions. They obser
that the simple-cubic lattice gives a constant value of
fraction of invading phase ofpt;0.66 as the lattice size
L→`. This corresponds to a defender fraction of 0.3
which they noted was close to but significantly differe
from the percolation thresholdpc50.3116 for the same lat
tice. Invasion percolation with trapping on the tw
dimensional~2D! lattices produces power-law behavior, wi
the fraction of invading phase tending toward zero asL→`.

Trapping was extended to ordinary percolation by D
and Wilkinson@7# without providing numerical estimates o
threshold values. At that time, interest was concentrated
cluster size distributions and the universality of critical e
ponents, and whether trapping created a different class.
evidence supported a negative conclusion.

Since then, estimates of trapping thresholds have b
neglected, especially in three dimensions. A reason for th
that the trapping mechanism necessarily involves m
larger amounts of computational effort than ordinary per
lation thresholds as it is necessary to check for trapping
each site is added. Pokornyet al. @8# have made an estimat
for bond percolation with trapping on the square network
pt'0.520. The ordinary percolation thresholdpc ~bond!
without trapping for the square lattice is exactly 0.5@9#. Here
pt1pc.1, but Pokornyet al., use a different definition ofpt
from the one used here, and by Wilkinson and Willemsen@6#
wherept1pc50.6610.31,1.

In this paper estimates for trapping percolation thresho
on the triangular, square, simple-cubic, body-centered cu
and face-centered cubic lattices are estimated by Mo
PRE 581063-651X/98/58~6!/7137~4!/$15.00
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Carlo simulations. These trapping thresholds appear to o
the universal formula proposed by Galam and Mauger@10#
for ordinary percolation thresholds, but with different n
merical values.

II. IMPLEMENTATION

For hypercubic networks, simulations were performed
L3L and L3L3L lattices. The unit vectors for the body
centered cubic and face-centered cubic lattices were the s
as used by Lorenz and Ziff@11#, and the diamond lattice wa
also based on a cubic structure. Rhombic boundaries w
used for the triangular network.

Simulations began by assigning an uncorrelated rand
number to each site from an arbitrary distribution. At ea
step the site with the largest value was chosen to be the
site to be occupied. Fluid was trapped when the displa
fluid became disconnected from a single face, designated
outflow face, and no further invasion into trapped regio
was allowed. The other faces acted as trapping bounda
Trapping was efficiently implemented by using the Hosh
and Kopelman cluster labeling algorithm@12# so that in the
numerical code only one pass over the sites was requi
Some speed improvement was obtained by running a ch

FIG. 1. Trapping thresholdspt(L) on a square (q54) network
plotted againstL ~abscissa scale isL20.77). Square and diamond
symbols were obtained using rulesR1 andR2 , respectively.
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in the local region as each site was added to detect the
sibility of trapping occurring at that step. Only if trappin
was a possibility was the full network searched. Between
and 105 realizations were run over a range of values ofL,
with a target standard error of<0.001. The maximum size
lattice simulated in 2D hadL5500 and in 3DL580. The
simulations consumed an aggregate of some months of
desktop CPU time.

The finite-size thresholdpt(L) for the fraction of invading
phase can be defined in various ways. Here two definiti
were studied to provide additional estimates of accuracy:~a!
the defending phase becomes disconnected from the fac
posite the outflow face, ruleR1 , and when~b! all the de-
fending fluid is trapped, ruleR2 . For all of the cases here
these two rules converge to the same value asL→`.

III. RESULTS

Results of the numerical simulations are plotted in Fi
1–6. Finite-size scaling forpt(L) was fitted to the relation-
ship

pt~L !2pt5AL2y. ~1!

FIG. 2. Trapping thresholdspt(L) on a triangular (q56) net-
work plotted againstL ~abscissa scale isL20.72). Square and dia-
mond symbols were obtained using rulesR1 andR2 , respectively.

FIG. 3. Trapping thresholdspt(L) on a diamond (q56) net-
work plotted againstL ~abscissa scale isL21.03). Square and dia-
mond symbols were obtained using rulesR1 andR2 , respectively.
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In two dimensions values produced using ruleR1 tended to
follow Eq. ~1! more closely, whereas in three dimensio
rule R2 appeared to give a better match. Fitted values foA
and y are recorded in Table I. They values were used to
construct the abscissa scales in Figs. 1–6.

Extrapolated values forpt as L→` are summarized in
Table II, where known values ofpc are included for com-
parison. Also shown are the sumspt1pc . Note that the 2D
lattices give pt.0 as L→`, unlike invasion percolation
with trapping@6#.

Galam and Mauger@10# have proposed the following
single formula for the ordinary percolation threshold~with-
out trapping! on all lattices:

pc5p0@~d21!~q21!#2adb, ~2!

whered is the dimension andq is the coordination number
For site percolation Galam and Mauger estimate the va
$p050.8889;a50.3601% on the triangular, square, and ho
eycomb lattices, and$p051.2868;a50.6160% on all lattices
d>3. For site percolationb50. This relationship is not exac

FIG. 4. Trapping thresholdspt(L) on a simple-cubic (q56)
network plotted againstL ~abscissa scale isL20.74). Square and
diamond symbols were obtained using rulesR1 and R2 , respec-
tively.

FIG. 5. Trapping thresholdspt(L) on a body-centered cubic
(q58) network plotted againstL ~abscissa scale isL21.05). Square
and diamond symbols were obtained using rulesR1 and R2 , re-
spectively.
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and van der Marck@13# explores evidence that dimensio
and coordination number are not sufficient to predict per
lation thresholds. Here the inexactness of the formula w
tested against the limited range ofpc values in Table II. On
the lattices withd52 this gave$p051.17; a50.33% and
with d53 $p051.24; a50.60% was obtained. From Galam
and Mauger@10# the values that deviate most from the fo
mula are the square (10.0056) and the body-centered cub
(10.007) lattices, hence the deviation here from Galam
Mauger’s values: they also included results fromd.3.

It was of interest to test the trapping thresholds aga
Galam and Mauger’s formula. Thept values in Table II were
fitted to

pt512p0@~d21!~q21!#2adb ~3!

giving $p051.17; a50.33% with d52 and $p051.33; a
50.59% with d53. A fit of the values in Table II to Eqs.~2!
and ~3! is shown in Fig. 7. Combining thept andpc results
allows a comparison of the difference between percola
thresholds with and without trapping:

12pt2pc50.02~q21!20.33

in two dimensions and

12pt2pc50.06~q21!20.60

in three dimensions.

FIG. 6. Trapping thresholdspt(L) on a face-centered cubic (q
512) network plotted againstL ~abscissa scale isL21.01). Square
and diamond symbols were obtained using rulesR1 and R2 , re-
spectively.

TABLE I. Finite-size scaling forpt(L) given by Eq.~1!, ordi-
nary site percolation with trapping.

Lattice A y Rule
Square (d52, q54) 0.73 0.77 R2

Triangular (d52, q56) 0.57 0.72 R2

Diamond (d53, q54) 21.05 1.03 R1

Simple cubic (d53, q56) 20.16 0.74 R1

Body-centered cubic (d53, q58) 20.78 1.05 R1

Face-centered cubic (d53, q512) 20.38 1.01 R1
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IV. DISCUSSION

It can be concluded from this study that percolation w
trapping appears to follow the same universal formula as
ordinary percolation threshold, with the same exponenta,
but with a different coefficientp0 . In both 2D and 3Dpt
1pc,1 and 12pt2pc→0 as q→`. This latter result is
intuitively consistent with trapping becoming more difficu
as the coordination number increases: there are more ou
for a potentially trapped fluid cluster to escape.

These results are significant because of the applicatio
residual phases in multiphase flow through porous media
demonstrate the importance of coordination number. For
erence, Sahimi@4# has remarked that for sandstones an av
age coordination number between 4 and 8 is a reason
estimate. There are also unpublished measurements of
bonate rocks with coordination numbers in the range 2
4.4, although measurement of coordination number in r
porous rocks is not subject to unambiguous interpretat
especially at these low coordination numbers.

Finally, some concluding observations on finite-size sc
ing can be made. For ordinary percolation without trappi
the exponent21/n appears, wheren is the correlation length
exponent.n has been determined as 4/3 in two dimensio
and approximately 0.88 in three dimensions@2#. If the same

FIG. 7. Comparison of thresholds with and without trapping a
function of (d21)(q21) with logarithmic scales. Circles and disk
are for ordinary percolation without trapping, triangles and d
monds are for ordinary percolation with trapping.

TABLE II. Comparison of ordinary percolation thresholds an
trapping thresholds. Accuracy estimates forpt are better than
60.002.

Lattice pt pc(site)a pc1pt

Square 0.396 0.5928 0.989
Triangular 0.490 0.5 0.990
Diamond 0.529 0.4299 0.959
Simple cubic 0.658 0.311604 0.970
Body-centered cubic 0.727 0.2460 0.974
Face-centered cubic 0.780 0.1998 0.980

aFrom Ref.@9#, pp. 182–183.
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scaling were to appear here,y50.75 in two dimensions and
y51.14 in three dimensions would be expected. These
ues are close to, but different from, the values in Table
noticeably different for the cubic lattice. It is difficult to draw
conclusions because the estimates for the exponenty are not
-

-
d

l-
I;

as good aspt , and it is a problem to separate statistic
scatter from deviations from Eq.~1! at smallL values. Con-
siderably more computational effort will be required to r
solve the details of finite-size scaling for rulesR1 , R2 and
alternative termination rules.
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